Abstract

Transport of hydrophilic di- and tripeptides into Lactococcus lactis is mediated by a proton motive force-driven peptide transport protein (DtpT) that shares similarity with eukaryotic peptide transporters, e.g., from kidney and small intestine of rabbit, man, and rat. Hydropathy profiling in combination with the "positive inside rule" predicts for most of the homologous proteins an alpha-helical bundle of 12 transmembrane segments, but the positions of these transmembrane segments and the location of the amino and carboxyl termini are by no means conclusive. The secondary structure of DtpT was investigated by analyzing 42 DtpT-alkaline phosphatase fusion proteins, generated by random or directed fusions of the corresponding genes. These studies confirm the presence of 12 transmembrane segments but refute several other predictions made of the secondary structure. Data obtained from the fusion proteins were substantiated by studying the accessibility of single cysteine mutants in putative cytoplasmic or extracellular loops by membrane (im)permeant sulfhydryl reagents. The deduced topology model of DtpT consists of a bundle of 12 alpha-helixes with a short amino and a large carboxyl terminus, both located at the cytoplasmic site of the membrane. On the basis of sequence comparisons with DtpT, it seems likely that the structure model of the amino-terminal half of DtpT also holds for the eukaryotic peptide transporters, whereas the carboxyl-terminal half is largely different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.