Abstract

Functional annotation of uncharacterized genes is the main focus of computational methods in the post genomic era. These tools search for similarity between proteins on the premise that those sharing sequence or structural motifs usually perform related functions, and are thus particularly useful for membrane proteins. Early responsive to dehydration (ERD) genes are rapidly induced in response to dehydration stress in a variety of plant species. In the present work we characterized function of Brassica juncea ERD4 gene using computational approaches. The ERD4 protein of unknown function possesses ubiquitous DUF221 domain (residues 312–634) and is conserved in all plant species. We suggest that the protein is localized in chloroplast membrane with at least nine transmembrane helices. We detected a globular domain of 165 amino acid residues (183–347) in plant ERD4 proteins and expect this to be posited inside the chloroplast. The structural-functional annotation of the globular domain was arrived at using fold recognition methods, which suggested in its sequence presence of two tandem RNA-recognition motif (RRM) domains each folded into βαββαβ topology. The structure based sequence alignment with the known RNA-binding proteins revealed conservation of two non-canonical ribonucleoprotein sub-motifs in both the putative RNA-recognition domains of the ERD4 protein. The function of highly conserved ERD4 protein may thus be associated with its RNA-binding ability during the stress response. This is the first functional annotation of ERD4 family of proteins that can be useful in designing experiments to unravel crucial aspects of stress tolerance mechanism.

Highlights

  • Dehydration is one of the most common environmental stresses that soil plants are exposed to affecting their growth and development through alternation in metabolism and gene expression [1]

  • The homologs of B. juncea ERD4 protein were identified in various plant lineages, for instance in bryophyta (Physcomitrella patens), in traceaophyta (Selaginella moellendorffii), in euphylophyta (O. sativa, A. thaliana)

  • We suggest from the analysis that ERD4 proteins may be characterized by the presence of both RNA-recognition motif (RRM) and DUF221 domains and not by

Read more

Summary

Introduction

Dehydration is one of the most common environmental stresses that soil plants are exposed to affecting their growth and development through alternation in metabolism and gene expression [1]. Plants induce a large number of genes under water stress, which can be divided into two categories based on the time of induction: responsive to dehydration and early responsive to dehydration [2,3]. The exact function of many stress tolerance associated gene products is still unknown and the encoded proteins have been grouped as hypothetical domains of uncharacterized functions (DUF). Responsive to dehydration (ERD) genes are rapidly induced to respond to dehydration and various other abiotic stresses. The ERD4 encoded protein (ERD4) has been validated as gene product in A. thaliana [2,4,5], in Zea Mays [6], and in Saccharum officinarum [7]. The organelle localization of the ERD4 protein has been debated in plasma, mitochondria and chloroplast membranes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.