Abstract
In Gram-negative bacteria, the folding and insertion of β-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the β-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA’s β-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 μs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA’s homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the β-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 μs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models.
Highlights
Gram-negative bacteria are enveloped by two membranes, an inner membrane and an outer membrane (OM) [1]
With the exact mechanisms of outer membrane proteins (OMPs) insertion by BamA and TamA unknown, we investigated the structural features of BamAs of different species together with TamA of E. coli using molecular dynamics (MD) simulations with each embedded in its respective native OM
Previous MD simulations of BamA of E. coli, H. ducreyi and N. gonorrhoeae supported this membrane thinning [22, 34], which can accelerate nascent proteins folding and inserting into the OM [39, 74]
Summary
Gram-negative bacteria are enveloped by two membranes, an inner membrane and an outer membrane (OM) [1]. The outer membrane proteins (OMPs) in the asymmetric OM play important roles in nutrient transport [5, 6], waste export [7, 8], cell signaling [9, 10] and membrane biogenesis [11, 12] and are almost exclusively β-barrel structures [13]. The folding and insertion of these β-barrel OMPs are mediated by the βbarrel assembly machinery (BAM) complex without ATP or ion gradients [14,15,16]. BamA contains a 16-strand transmembrane β-barrel and five periplasmic polypeptide-transport-associated (POTRA) domains [22]. Experiments have shown that BamA itself is able to accelerate OMP folding in vitro [26], BamD is required for cell viability in vivo [27], and all BAM components are required to achieve maximum efficiency [28, 29]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.