Abstract

In Canada many potable water sources contain very high concentrations of Dissolved Organic Carbon (DOC), accompanied by a wide range of hardness. DOC reacts with chlorine used in water disinfection to form potentially carcinogenic chlorine disinfection by-products – Trihalomethanes (THMs) and haloacetic acids (HAAs). Dual membrane plants that combine microfiltration (MF) and ultrafiltration (UF)or nanofiltration (NF) can remove DOC and reduce THMs concentration, but these plants are prone to serious fouling of their UF or NF membranes. The objectives of our research are to study the mechanisms of UF/NF membrane fouling. We have determined various resistances of DOW Filmtech NF90 (flat sheet coupon), based on the resistance in series model. The experiments were conducted on a bench scale cross-flow membrane filtration unit (Sterlitech), using synthetic water with DOC of 11 mg/L and calcium hardness of 350 mg/L that represents typical surface waters in Manitoba (Canada). The results suggest that gel layer on the surface of the membrane has a significant contribution to the flux decline. Atomic Force Microscope (AFM) allowed for relatively inexpensive, non-destructive analysis of the surface area of the gel layer deposited on the membrane filter. The morphology of the gel layer was related to the gel layer resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.