Abstract

In tissue from area CA1 of the rat hippocampus prepared for electron microscopic study by thin-sectioning, asymmetric synaptic junctions were found on dendritic spines, spiny dendritic shafts, and non-spiny dendritic shafts. In freeze-fractured preparations, aggregates of large particles were found on the extracellular half of the postsynaptic membrane at each of these synaptic junctions. Particle aggregate areas were measured and particle packing densities were computed at dendritic spine synapses and dendritic shaft synapses in area CA1, and compared to similar measures of particle aggregates on dendritic spines of cerebellar Purkinje cells. All of these CA1 and cerebellar synapses are excitatory and are thought to use glutamate as a neurotransmitter. There was a tendency for the dispersion of particles within individual aggregates to be less uniform in larger aggregates in both area CA1 and cerebellar cortex. Distinct particle-free zones could be distinguished in the center of particle aggregates on large “mushroom-shaped” spines in area CA1. There was no statistically significant difference between the particle densities at CA1 dendritic spines (2848 ± 863particles/μm 2) and CA1 dendritic shafts (2707 ± 718particles/μm 2). However, the average density of particles at cerebellar dendritic spine synapses (3614 ± 1081particles/μm 2) was significantly greater than at dendritic spine or shaft synapses found in area CA1. Symmetric synaptic junctions were observed on the CA1 pyramidal cell somas and dendritic shafts in thin-sectioned preparations. These synapses typically exert an inhibitory action mediated by gammaaminobutyric acid. In freeze-fracture preparations, large varicosities were found apposed to the pyramidal somal and dendric membranes, but there were no specializations of particle distribution on either the extracellular or the cytoplasmic half of the fractured postsynaptic membranes. This finding parallels observations from freeze-fracture preparations of other GABAergic synapses in the central nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.