Abstract

Species-specific enzymes provide a substantial boost to the precision and selectivity of identifying dairy products contaminated with foodborne pathogens, due to their specificity for target organisms. In this study, we developed cobalt oxyhydroxide nanosheets (CoOOH NSs) for a dual-mode biosensor capable of detecting β-galactosidase (β-Gal)-positive bacteria in milk and milk powder. The sensor exploits the oxidase-mimicking activity of CoOOH NSs, where β-Gal converts the substrate β-D-galactopyranoside to p-aminophenol, reducing CoOOH NSs to Co2+ and inhibiting the formation of the blue product from 3,3′,5,5′-tetramethylben-zidine. Sensitivity was enhanced through membrane filtration and β-Gal induction by isopropyl β-D-thiogalactoside. The assay achieved a detection limit of 5 cfu mL−1 and demonstrated recoveries (90.7 % to 103 %) and relative standard deviations <5.7 % in milk and milk powder samples. These findings underscore the potential of the sensor for detecting β-Gal-positive bacteria in dairy products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.