Abstract

Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (RM) is an important parameter affecting power consumption or power production in electrodialytic processes. In contrast to real applications, often RM is determined while using a standard 0.5M NaCl external solution. It is known that RM increases with decreasing concentration. However, the detailed effect of a salinity gradient present over an IEM on RM was not known, and is studied here using alternating and direct current. NaCl solution concentrations varied from 0.01 to 1.1M. The results show that RM is mainly determined by the lowest external concentration. RM can be considered as two resistors in series i.e. a gel phase (concentration independent) and an ionic solution phase (concentration dependent). The membrane conductivity is limited by the conductivity of the ionic solution when the external concentration, cext<0.3M. The membrane conductivity is limited by the conductivity of the gel phase when cext≥0.3M, then differences of RM are small. A good approximation of experimentally determined RM can be obtained. The internal ion concentration profile is a key factor in modeling RM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.