Abstract
We compared the passive electrical properties of isolated ventricular myocytes (resting potential -65 mV, fast action potentials, and no spontaneous activity) with those of 2- to 7-day-old cultured ventricle cells from neonatal rats (resting potential -50 mV, slow action potentials, and presence of spontaneous activity). In myocytes the specific membrane capacity was 0.99 microF/cm2, and the specific membrane resistance increased from 2.46 k omega.cm2 at -65 mV to 7.30 k omega.cm2 at -30 mV. In clusters, the current-voltage relationships measured under current-clamp conditions showed anomalous rectification and the input resistance decreased from 1.05 to 0.48 M omega when external K+ concentration was increased from 6 to 100 mM. Using the model of a finite disk we determined the specific membrane resistance (12.9 k omega.cm2), the effective membrane capacity (17.8 microF/cm2), and the lumped resistivity of the disk interior (1,964 omega.cm). We conclude that 1) the voltage dependence of the specific membrane resistance cannot completely explain the membrane resistance increase that accompanies the appearance of spontaneous activity; 2) a decrease of the inwardly rectifying conductance (gk1) is mainly responsible for the increase in the specific membrane resistance and depolarization; and 3) approximately 41% of the inward-rectifying channels are electrically silent when spontaneous activity develops in explanted ventricle cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.