Abstract

An electrochemical proton gradient exists across the plasma membrane and the mitochondrial membrane of the bloodstream form of Trypanosoma brucei. The membrane potential across the plasma membrane and the regulation of the internal pH depend on the temperature. Leishmania donovani regulates its internal pH and maintains a constant electrochemical proton gradient across its plasma membrane under all conditions examined. The mitochondrion of the T. brucei bloodstream form is energized, even though the reactions taking place in it do not result in net ATP synthesis and the Kreb's cycle and the respiratory chain are absent. Glucose is transported across the plasma membrane of T. brucei by a facilitated diffusion carrier, that can transport a wider range of substrates than its mammalian counterparts. Pyruvate exits the cell via a facilitated diffusion transporter as well. Conflicting evidence exists for the mechanism of glucose transport in L. donovani; biochemical evidence suggests proton/glucose symport, while facilitated diffusion is indicated by physiological data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.