Abstract

Zygotes of the brown algaFucus distichus undergo a series of intracellular changes resulting in the establishment of a polar growth axis prior to the first embryonic cell division. In order to examine the dynamics of membrane recycling which occur in the zygote during polar growth of the rhizoid, we probed living Fucus zygotes with the vital stain FM4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylammo)phenyl)hexatrienyl)pyridinium dibromide. In newly fertilized, spherical zygotes, FM4-64 staining is symmetric and predominantly in the perinuclear region which is rich in endoplasmic reticulum, Golgi, and vacuolar membranes. As rhizoid or tip growth is initiated, this population of stained membranes becomes asymmetrically redistributed, concentrating at the rhizoid tip and extending centrally to the perinuclear region. This asymmetric localization is maintained in the zygote throughout polar growth of the rhizoid and during karyokinesis. Subsequently, FM4-64 staining also begins to accumulate in a central location between the daughter nuclei. As cytokinesis proceeds, this region of stain expands laterally from this central location, perpendicular to the plane of polar rhizoid outgrowth. The staining pattern thus delineates the formation of a cell plate, similar spatially to the accumulation of nascent plate membranes of higher plants. Treatment of Fucus zygotes with brefeldin-A inhibits both asymmetric growth of the rhizoid and formation of a new cell plate. These data suggest that inF. distichus FM4-64 is labeling a Golgi-derived membrane fraction that appears to be recycling between the site of tip growth, perinuclear region, and new cell plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.