Abstract

Membrane processes represent a well matured technology for water treatment with low environmental footprints compared to other type of processes. We have now combined this technology with nanomaterials, ionic liquids (negligible vapor pressure), and poly(ionic liquids) in order to enlarge the field of applications while benefiting from the advantages of membranes. We have modified flat sheet water filtration membrane and used it as both catalytic support and reactor with the advantages to make the reaction and the separation of products in only one step. For this purpose, catalytic metallic nanoparticles of palladium (diameter of ca. 2 nm) were synthesized in a gel-poly(ionic liquid) layer grafted at the surface of polymeric filtration membranes by UV-photografting method. The so obtained catalytic membrane was successfully applied in the hydrogenation of trans-4-phenyl-3-buten-2-one in forced flow-through configuration, which gave full conversion in a few seconds (2.6 s) showing advantages over the batch reactor process (in that case, palladium nanoparticles were synthesized in the ionic liquid [MMPIM][NTf2] (1,2-dimethyl-3-propylimidazolium bis-(trifluoromethylsulfonyl)imide)). Nevertheless, the catalytic membrane used in submerged mode no more prevailed over the batch reactor. Catalytic nanoparticles remain highly active in the membrane after 12 cycles of reaction without need of recuperation. Results were compared to one obtains with a similar system in batch reactor conditions, showing high efficiency of our process in term of selectivity and reactivity, combined to an important compactness, the productivity of the catalytic hollow fiber membrane reactor and permitting to operate at larger scale with promising results in an environmental friendly way in term of energy and product (metal, solvent) consuming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.