Abstract

Permeability ( P) of Cl 2, O 2, N 2 and H 2 was measured in polydimethylsiloxane (PDMS) composite membranes with two different degrees of cross-linking. The permeability was measured in the low pressure range (1–3 bar absolute) over a fairly large temperature range 35–120°C. The functionalities of the membranes were compared on the basis of permeation rate and ability to separate the gases Cl 2–O 2. These results are part of an extensive survey where perfluorinated and carbon membranes are also included (not reported here). The purpose of the project is to develop an industrial membrane with high permselectivity for either O 2 or Cl 2 (depending on the type of membrane) at temperatures preferably above 70°C. Process conditions are set in an industrial project. The PDMS membranes are good candidates for this separation, having a high permeation rate for Cl 2 and a selectivity of Cl 2/O 2 in the range of 8–25 depending on temperature. Durability of the PDMS membranes in this aggressive environment is found to be very dependent on process conditions and on how the material is polymerized and cured. For documentation of durability, various silicones were tested; these results are to be reported separately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.