Abstract

Oxidative stress is an early hallmark in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, the critical biochemical effector mechanisms of oxidative neurotoxicity have remained surprisingly elusive. In screening various peroxides and potential substrates of oxidation for their effect on neuronal survival, we observed that intramembrane compounds were significantly more active than aqueous or amphiphilic compounds. To better understand this result, we synthesized a series of competitive and site-specific membrane protein oxidation inhibitors termed aminoacyllipids, whose structures were designed on the basis of amino acids frequently found at the protein-lipid interface of synaptic membrane proteins. Investigating the aminoacyllipids in primary neuronal culture, we found that the targeted protection of transmembrane tyrosine and tryptophan residues was sufficient to prevent neurotoxicity evoked by hydroperoxides, kainic acid, glutathione-depleting drugs, and certain amyloidogenic peptides, but ineffective against non-oxidative inducers of apoptosis such as sphingosine or Akt kinase inhibitors. Thus, the oxidative component of different neurotoxins appears to converge on neuronal membrane proteins, irrespective of the primary mechanism of cellular oxidant generation. Our results indicate the existence of a one-electron redox cycle based on membrane protein aromatic surface amino acids, whose disturbance or overload leads to excessive membrane protein oxidation and neuronal death. Membrane proteins have rarely been investigated as potential victims of oxidative stress in the context of neurodegeneration. This study provides evidence that excessive one-electron oxidation of membrane proteins from within the lipid bilayer, depicted in the graphic, is a functionally decisive step toward neuronal cell death in response to different toxins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.