Abstract

Lipid bilayers are delicate structures that are easily disrupted by a variety of amphipathic molecules. Yet the viability of a cell requires the continued assembly of large amphipathic proteins within its membranes without damage. The need to minimize bilayer disruption may account for a number of fundamental features of membrane protein assembly. These include the use of redundant sequence information to establish the topologies and folded structures of membrane proteins, and the existence of efficient mechanisms to rid cells of misassembled proteins. Most missense mutations that inactivate a membrane protein probably do so by altering the folding of the membrane-inserted structure rather than by rearranging the topology or by changing key residues involved directly in function. Such misfolded membrane proteins may be toxic to cells if they escape cellular safeguards. This toxicity may underlie some human degenerative diseases due to mutant membrane proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.