Abstract
Peripheral sensory neurons transduce physicochemical stimuli affecting somatic tissues into the firing of action potentials that are conveyed to the central nervous system. This results in conscious perception, adaptation, and survival, but alterations of the firing patterns can result in pain and hypersensitivity conditions. Thus, understanding the molecular mechanisms underlying action potential firing in peripheral sensory neurons is essential in sensory biology and pathophysiology. Over the past 30 years, it has been consistently reported that these cells can display membrane potential instabilities (MPIs), in the form of subthreshold membrane potential oscillations or depolarizing spontaneous fluctuations. However, research on this subject remains sparse, without a clear conductive thread to be followed. To address this, we here provide a synthesis of the description, molecular bases, mathematical models, physiological roles, and pathophysiological implications of MPIs in peripheral sensory neurons. Membrane potential instabilities have been reported in trigeminal, dorsal root, and Mes-V ganglia, where they are believed to support repetitive firing. They are proposed to have roles also in intercellular communication, ectopic firing, and responses to tonic and slow natural stimuli. We highlight how MPIs are of great interest for the study of sensory transduction physiology and how they may represent therapeutic targets for many pathological conditions, such as acute and chronic pain, itch, and altered sensory perceptions. We identify future research directions, including the elucidation of the underlying molecular determinants and modulation mechanisms, their relation to the encoding of natural stimuli and their implication in pain and hypersensitivity conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.