Abstract

We studied the patterns of membrane potential changes in vocal cord tensor motoneurons, i.e. cricothyroid muscle motoneurons (CTMs), during fictive breathing, vocalization, coughing, and swallowing in decerebrate paralyzed cats to determine the nature of central drives to CTMs during these behaviors. CTMs were identified by antidromic activation from the superior laryngeal nerve. During breathing, CTMs always depolarized during the inspiratory phase, and sometimes depolarized during the expiratory phase as well. During vocalization, CTMs strongly depolarized. During coughing, CTMs exhibited depolarizations during both inspiratory and expiratory phases, but it was interrupted by a transient repolarization between the last part of the inspiratory phase and the first part of the abdominal burst during which chloride-dependent inhibitory postsynaptic potentials were revealed. During swallowing, most CTMs hyperpolarized, and this hyperpolarization was sometimes followed by a weak depolarization. We conclude that the main role of the cricothyroid muscle is vocalization but the functional roles in coughing and swallowing are minor, and that the CTM activity during resting breathing and vocalization are primarily controlled by excitatory inputs, while during coughing and swallowing, inhibitory inputs play roles in shaping membrane potential trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call