Abstract
It is well-established that native plasma membranes are characterized by an asymmetric distribution of charged (anionic) lipids across the membrane. To clarify how the asymmetry can affect membrane electrostatics, we have performed extensive atomic-scale molecular dynamics simulations of asymmetric lipid membranes composed of zwitterionic (phosphatidylcholine (PC) or phosphatidylethanolamine (PE)) and anionic (phosphatidylserine (PS)) leaflets. It turns out that the asymmetry in transmembrane distribution of anionic lipids gives rise to a nonzero potential difference between the two sides of the membrane. This potential arises from the difference in surface charges of the two leaflets. The magnitude of the intrinsic membrane potential was found to be 238 mV and 198 mV for PS/PC and PS/PE membranes, respectively. Remarkably, this potential is of the same sign as the membrane potential in cells. Our findings, being in reasonable agreement with available experimental data, lend support to the idea that the transmembrane lipid asymmetry typical of most living cells contributes to the membrane potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.