Abstract
Changes in plasma membrane potential of isolated bovine adrenal chromaffin cells were measured independently by two chemical probe methods and related to corresponding effects on catecholamine secretion. The lipophilic cation tetraphenylphosphonium (TPP+) and the carbocyanine dye 3,3'-dipropylthiadicarbocyanine [DiS-C3-(5)] were used. The necessity of evaluating the subcellular distribution of TPP+ among cytoplasmic, mitochondrial, secretory granule, and bound compartments was demonstrated and the resting plasma membrane potential determined to be -55 mV. The relationship between membrane potential and catecholamine secretion was determined in response to variations in extracellular K+ and to the presence of several secretagogues including cholinergic receptor ligands, veratridine, and ionophores for Na+ and K+. The dependence of potential on K+ concentration fit the Goldman constant field equation with a Na/K permeability ratio of 0.1. The dependence of both K+- and veratridine-evoked catecholamine secretion on membrane potential exhibited a potential threshold of about -40 mV before a significant rise in secretion occurred. This is likely related to the threshold for opening of voltage-sensitive Ca2+ channels. Acetylcholine and nicotine evoked a large secretory response without a sufficiently sustained depolarization to be detectable by the relatively slow potential sensitive chemical probes. Decamethonium induced a detectable depolarization of the chromaffin cells. Veratridine and gramicidin evoked both membrane depolarization and catecholamine release. By contrast the K ionophore valinomycin evoked significant levels of secretion without any depolarization. This is consistent with its utilization of an intracellular source of Ca2+ and the independence of its measured secretory response on extracellular Ca2+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.