Abstract

Escherichia coli mutants harboring the pss-1 allele (coding for a temperature-sensitive phosphatidylserine synthase) are temperature sensitive for growth and synthesize less phosphatidylethanolamine at higher temperatures, giving rise to abnormal membrane phospholipid compositions. To obtain information concerning the determinant for the phospholipid polar headgroup composition and the lethal factor in the defective membranes, we have examined the effect of increased supply of sn-glycerol 3-phosphate on the phospholipid synthesis and the growth ability of a pss-1 mutant. For this purpose, a pair of E. coli K-12 derivatives isogenic except for the pss-1 allele was constructed from strain BB26-36 to harbor the mutations related to glycerol metabolism (glpD3, glpR2, glpKi, and phoA8). Pulse- and uniform-labeling of phospholipids with 32P at 42 degrees C in a synthetic medium with (0.2%) or without glycerol showed that glycerol further lowered the temperature-sensitive formation of phosphatidylethanolamine, removed the phosphatidate and CDP-diacylglycerol accumulated in the absence of glycerol, and resulted in an increase in cardiolipin content in the pss-1 mutant. The phospholipid synthesis and contents in the pss+ strain were not significantly affected by glycerol. Glycerol in the medium markedly enhanced the growth defect of the pss-1 mutant, which was remediable by sucrose. The results indicate that the intracellular pool of sn-glycerol 3-phosphate is the limiting factor for acidic phospholipid synthesis in the pss-1 mutant, and cardiolipin unusually accumulated is injurious to the functional E. coli membranes. Possible determinants for the phospholipid composition of the wild-type E. coli cells are also discussed on the basis of the present observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.