Abstract

Peptides derived from the unprocessed N-termini of mouse and bovine prion proteins (mPrPp and bPrPp, respectively), comprising hydrophobic signal sequences followed by charged domains (KKRPKP), function as cell-penetrating peptides (CPPs) with live cells, concomitantly causing toxicity. Using steady-state fluorescence techniques, including calcein leakage and polarization of a membrane probe (diphenylhexatriene, DPH), as well as circular dichroism, we studied the membrane interactions of the peptides with large unilamellar phospholipid vesicles (LUVs), generally with a 30% negative surface charged density, comparing the effects with those of the CPP penetratin (pAntp) and the pore-forming peptide melittin. The prion peptides caused significant calcein leakage from LUVs concomitant with increased membrane ordering. Fluorescence correlation spectroscopy (FCS) studies of either rhodamine-entrapping (REVs) or rhodamine-labeled (RLVs) vesicles, showed that addition of the prion peptides resulted in significant release of rhodamine from the REVs without affecting the overall integrity of the RLVs. The membrane leakage effects due to the peptides had the following order of potency: melittin > mPrPp > bPrPp > pAntp. The membrane perturbation effects of the N-terminal prion peptides suggest that they form transient pores (similar to melittin) causing toxicity in parallel with their cellular trafficking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.