Abstract

Coarse-grained molecular dynamics (CGMD) simulation technique (MARTINI force field) is applied to monitor the aggregation of helical peptides representing the transmembrane sequence and its extension of bone marrow stromal cell antigen 2 (BST-2). One of the peptides is coupled with a protein transducing domain (PTD) of nine arginine residues (R9) at its N-terminal side as well as a peptide, pep11**, which has been shown to bind to human papilloma virus 16 (HPV16) E6 oncoprotein. A short hydrophobic stretch of the transmembrane domain (TMD) of BST-2 aggregates the fastest and inserts into a lipid membrane. An aggregate of R9-pep11** attaches to the membrane via simultaneous contact of many arginine residues. Monomers from the aggregates of the shortest of the hydrophobic TMDs dissolve into the opposing leaflet when the aggregate spans the bilayer. A ‘flipping’ of the individual monomeric peptides is not observed.Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.