Abstract

Transesterification is a principal chemical reaction that occurs in biodiesel production. We developed a novel biocatalytic membrane microreactor (BMM) for continuous transesterification by utilizing an asymmetric membrane as an enzyme-carrier for immobilization. The BMM was developed by pressure driven filtration of lipase from Pseudomonas fluorescens, which is suitable for highly efficient biocatalytic transesterification. Lipase solution was allowed to permeate through an asymmetric membrane with NMWL 300 kDa composed of polyethersulfone. The performances of BMM were studied in biodiesel synthesis via transesterification of triolein with methanol. Transesterification was carried out by passing a solution of triolein and methanol through the asymmetric membrane. The degree of triolein conversion using this microreactor was ca. 80% with a reaction time of 19 min. The BMM system displayed good stability, with no activity decay over a period of 12 day with continuous operation. Results from triolein transesterification clearly demonstrate the potential of an asymmetric membrane as an enzyme carrier material. Enzyme activity (mmol/h·glipase) was approximately 3 fold higher than that of native free lipase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.