Abstract
The structure and dynamics of the lipid membrane can affect the activity of membrane proteins. Therefore, small lipophilic molecules that alter membrane properties (such as the neurotransmitter serotonin) can potentially modulate receptor activity without binding to the receptor. Here, we investigated how the activity of neuropeptide Y type 4 receptor (Y4R, reconstituted in lipid bicelles) is modulated by serotonin, which has no known interaction with Y4R. We found a serotonin-concentration-dependent decrease (down to 0.1 mM of serotonin) in the ligand affinity of Y4R. This effect correlates with a serotonin-induced reduction of the resistance of the bilayer to indentation (measured by atomic force microscopy) and bilayer thickness (measured by solid state NMR) in two different types of zwitterionic lipid bicelles. Our findings indicate a "membrane-mediated allosteric effect" of serotonin on the activation of Y4R and suggest the potential for developing pharmacophores, which can modulate cellular signaling without directly interacting with any receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.