Abstract

Abstract Ion exchange membranes are widely used in chemical power sources, including fuel cells, redox batteries, reverse electrodialysis devices and lithium-ion batteries. The general requirements for them are high ionic conductivity and selectivity of transport processes. Heterogeneous membranes are much cheaper but less selective due to the secondary porosity with large pore size. The composition of grafted membranes is almost identical to heterogeneous ones. But they are more selective due to the lack of secondary porosity. The conductivity of ion exchange membranes can be improved by their modification via nanoparticle incorporation. Hybrid membranes exhibit suppressed transport of co-ions and fuel gases. Highly selective composite membranes can be synthesized by incorporating nanoparticles with modified surface. Furthermore, the increase in the conductivity of hybrid membranes at low humidity is a significant advantage for fuel cell application. Proton-conducting membranes in the lithium form intercalated with aprotic solvents can be used in lithium-ion batteries and make them more safe. In this review, we summarize recent progress in the synthesis, and modification and transport properties of ion exchange membranes, their transport properties, methods of preparation and modification. Their application in fuel cells, reverse electrodialysis devices and lithium-ion batteries is also reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.