Abstract
The epidermal growth factor receptor (EGFR) plays a key role in regulating cell proliferation, migration, and differentiation, and aberrant EGFR signaling is implicated in a variety of cancers. EGFR signaling is triggered by extracellular ligand binding, which promotes EGFR dimerization and activation. Ligand-binding measurements are consistent with a negatively cooperative model in which the ligand-binding affinity at either binding site in an EGFR dimer is weaker when the other site is occupied by a ligand. This cooperativity is widely believed to be central to the effects of ligand concentration on EGFR-mediated intracellular signaling. Although the extracellular portion of the human EGFR dimer has been resolved crystallographically, the crystal structures do not reveal the structural origin of this negative cooperativity, which has remained unclear. Here we report the results of molecular dynamics simulations suggesting that asymmetrical interactions of the two binding sites with the membrane may be responsible (perhaps along with other factors) for this negative cooperativity. In particular, in our simulations the extracellular domains of an EGFR dimer spontaneously lay down on the membrane in an orientation in which favorable membrane contacts were made with one of the bound ligands, but could not be made with the other. Similar interactions were observed when EGFR was glycosylated, as it is in vivo.
Highlights
The epidermal growth factor receptor (EGFR), a member of the Her (ErbB) family of cell-surface receptors, is critical to a variety of cellular processes and is implicated in the development of several forms of cancer and other diseases [1,2,3]
Epidermal growth factor receptor (EGFR) molecules are of central importance in cellular communication
EGFR dysfunction has been implicated in a variety of cancers, and EGFR-targeting drugs are commonly used in cancer treatments
Summary
The epidermal growth factor receptor (EGFR), a member of the Her (ErbB) family of cell-surface receptors, is critical to a variety of cellular processes and is implicated in the development of several forms of cancer and other diseases [1,2,3]. In this model, which is consistent with earlier results [16], negative cooperativity underlies the heterogeneity of EGFR ligand binding [15,16]: The binding affinity of a ligand at one EGFR binding site is smaller when the other site is occupied)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.