Abstract
Penetratin is a 16-residue peptide [RQIKIWFQNRRMKWKK(43-58)] derived from the Antennapedia homeodomain, which is used as a vector for cellular internalization of hydrophilic molecules. In order to unravel the membrane translocation mechanism, we synthesized new penetratin variants. The contribution of the positively charged residues was studied by double substitutions of Lys and/or Arg residues to Ala, while the specific contribution of Trp48 and Trp56 was studied by individual substitution of these residues to Phe. Trp fluorescence titrations demonstrated the importance of the positively charged residues for the initial electrostatic interaction of the peptide with negatively charged vesicles. In contrast, none of the Trp residues seemed critical for this initial interaction. Trp fluorescence quenching experiments showed that penetratin lies close to the water-lipid interface in a tilted orientation, while circular dichroism indicated that lipid binding increased the alpha-helical structure of the peptides. The R53A/K57A and R52A/K55A substitutions increased calcein leakage and decreased vesicle aggregation compared to wild-type penetratin. These variants insert deeper into the lipid bilayer, due to an increased hydrophobic environment of Trp56. The W48F and W56F substitutions had a minor effect on membrane insertion and destabilization. Cellular internalization of the R53A/K57A, R52A/K55A and K46A/K57A variants by MDCK cells was similar to wild-type penetratin, as shown by flow cytometry. Moreover, residue Trp48 specifically contributed to endocytosis-independent internalization by MDCK cells, as demonstrated by the lower uptake of the W48F variant compared to wild-type penetratin and to the W56F variant. None of the penetratin variants was haemolytic or cytotoxic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.