Abstract

A combination of immunological and biochemical methods were used to identify surface membrane components involved in cell-substratum adhesion. Broad-spectrum antiserum, prepared against surface membranes from hamster cells, induced reversible rounding and detachment of hamster fibroblasts from a substratum in vitro. This phenomenon was inhibited by Nonidet P-40 extracts of hamster cells. Therefore, an antibody neutralization assay was developed to detect the presence of antigen during the fractionation of Nonidet P-40 extracts of cells. After two differential precipitation steps, anion exchange chromatography, and sequential lectin affinity chromatography, a fraction greatly enriched in ability to block antiserum-induced changes in cell adhesion and appearance was isolated. Analysis of this fraction by NaDodSO4/polyacrylamide gel electrophoresis revealed a highly restricted group of glycoproteins with Mr approximately 140,000. A lectin-purified glycoprotein fraction was used to raise a higher titer antiserum that was able to induce reversible rounding and detachment of cells from a substratum and, when immobilized on an antibody affinity column, was able to bind and release material capable of blocking antiserum-induced cell rounding. These methods have allowed us to focus attention on a restricted group of glycoproteins that are integral constituents of the surface membrane and which play some as yet undetermined role in the process of cell--substratum adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call