Abstract

Secondary structure predictions have led to the identification of a major membrane-anchoring domain of the cytoskeletal protein talin spanning from amino acid 385 to 406. Using a synthetically derived peptide of this region, researchers have shown that it inserts into POPC/POPG phospholipid membranes with a partition coefficient of K app =1.1±0.2×10 5 M −1 and has an average molar reaction enthalpy of ΔH=−2.5 kcal/mol, as determined by monolayer expansion technique and isothermic titration calorimetry [J. Biol. Chem. 275, 17954]. We applied resonance energy transfer (RET) assays to analyze the fusogenic properties of this peptide by lipid mixing and used liposomes containing carboxyfluorescein to measure the contents leakage. We directly visualized talin peptide-induced vesicle membrane fusion using cryo-electron microscopy. This is the first example of a cytoskeletal protein domain that can trigger membrane fusion that might be of importance for understanding membrane targeting and motile events at the leading edge of the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.