Abstract

The biogenesis and maintenance of the endoplasmic reticulum (ER) requires membrane fusion. ER homotypic fusion is driven by the large GTPase atlastin. Domain analysis of atlastin shows that a conserved region of the C-terminal cytoplasmic tail is absolutely required for fusion activity. Atlastin in adjacent membranes must associate to bring the ER membranes into molecular contact. Drosophila atlastin dimerizes in the presence of GTPγS but is monomeric with GDP or without nucleotide. Oligomerization requires the juxtamembrane middle domain three-helix bundle, as does efficient GTPase activity. A soluble version of the N-terminal cytoplasmic domain that contains the GTPase domain and the middle domain three-helix bundle serves as a potent, concentration-dependent inhibitor of membrane fusion both in vitro and in vivo. However, atlastin domains lacking the middle domain are without effect. GTP-dependent dimerization of atlastin generates an enzymatically active protein that drives membrane fusion after nucleotide hydrolysis and conformational reorganization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.