Abstract

The spike glycoprotein (G protein) of rabies virus (CVS strain) expressed in HeLa cells from cloned cDNA mediated membrane fusion after exposure to pHs of 6.1 or below. Chemical crosslinking showed that the rabies G protein, like the vesicular stomatitis virus (VSV) G protein, could be crosslinked to dimers and trimers, indicating that rabies G protein is a trimer. However, unlike the VSV G protein, rabies G protein trimers were not stable to sedimentation in sucrose gradients, even at a mildly acidic pH which stabilizes the VSV G protein trimers. In addition, we report that the expressed rabies virus G protein was functional because it could assemble into VSV particles (ts045) lacking VSV G protein and rescue infectivity. These VSV (rabies) pseudotypes were neutralized only by an antibody to the rabies G protein. We also examined the properties of a hybrid protein containing the extracellular domain of the rabies virus glycoprotein and the transmembrane and cytoplasmic domains of the VSV G protein. This protein was transported to tha cell surface and could be crosslinked to form dimers and trimers, but had little or no detectable membrane fusion activity. The lack of fusion activity was paradoxical because the hybrid protein could rescue VSV infectivity, although the titers were lower than those obtained with the wild-type rabies G protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.