Abstract
Although several recent studies have demonstrated the potential of using ultrafiltration for the purification of plasmid DNA, these data were limited to dilute solutions where membrane fouling was negligible. Ultrafiltration experiments were performed using 2.9 and 16.9kbp (kilo base pair) supercoiled plasmids over a range of plasmid concentrations and filtration conditions using different molecular weight cutoff polyethersulfone ultrafiltration membranes. The flux and plasmid sieving coefficient were constant in dilute solutions but showed a significant decline in the more concentrated solutions. The flux decline was not due to concentration polarization effects; the filtrate flux and plasmid sieving coefficient were both essentially independent of the stirring speed. A simple fouling model was developed based on the partial blockage of the membrane pores by individual plasmids, with these partially blocked pores allowing filtrate flow but being inaccessible to subsequent DNA. The model calculations were in good agreement with the experimental data, with the plasmid capture probability increasing with increasing plasmid size. This behavior is consistent with independent results for the probability of knot formation in long plasmids. These results provide important insights into the fouling behavior of plasmid DNA during ultrafiltration through semipermeable membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.