Abstract

Recoverin is the only protein for which the phenomenon of calcium-myristoyl switch has been demonstrated without ambiguity. It is located in rod disk membranes where the highest content in polyunsaturated lipid acyl chains can be found. However, although essential to better understand the inactivation of the phototransduction process, the role of membrane fluidity on recoverin recruitment is unclear. We have therefore investigated the immobilization of the recoverin myristoyl moiety in the presence of phosphocholine bilayers using 2H solid-state NMR spectroscopy. Several lipids with different acyl chains were selected to investigate model membranes characterized by different fluidity. Immobilization of the recoverin myristoyl moiety was successfully observed but only in the presence of calcium and in specific lipid disordered states, showing that an optimal fluidity is required for recoverin immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.