Abstract
In this work, we highlight an electrophysiological feature often observed in recordings from mouse CA1 pyramidal cells that has so far been ignored by experimentalists and modelers. It consists of a large and dynamic increase in the depolarization baseline (i.e., the minimum value of the membrane potential between successive action potentials during a sustained input) in response to strong somatic current injections. Such an increase can directly affect neurotransmitter release properties and, more generally, the efficacy of synaptic transmission. However, it cannot be explained by any currently available conductance-based computational model. Here we present a model addressing this issue, demonstrating that experimental recordings can be reproduced by assuming that an input current modifies, in a time-dependent manner, the electrical and permeability properties of the neuron membrane by shifting the ionic reversal potentials and channel kinetics. For this reason, we propose that any detailed model of ion channel kinetics for neurons exhibiting this characteristic should be adapted to correctly represent the response and the synaptic integration process during strong and sustained inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biophysical Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.