Abstract

Plasma membrane segregation into various nanoscale membrane domains is driven by distinct interactions between diverse lipids and proteins. Among them, liquid-ordered (Lo) membrane domains are defined as "lipid rafts" and liquid-disordered (Ld) ones as "lipid non-rafts". Using model membrane systems, both intra-leaflet and inter-leaflet dynamics of these membrane domains are widely studied. Nevertheless, the biological impact of the latter, which is accompanied by membrane domain registration/anti-registration, is far from clear. Hence, in this work, we studied the biological relevance of the membrane domain anti-registration using both all-atom molecular dynamics (MD) simulations and confocal fluorescence microscopy. All-atom MD simulations suggested an intrinsic transmembrane potential for the case of the membrane anti-registration (Lo/Ld). Meanwhile, confocal fluorescence microscopy experiments of HeLa and 293T cell lines indicated that membrane cholesterol depletion could significantly alter the transmembrane potential of cells. Considering differences in the cholesterol content between Lo and Ld membrane domains, our confocal fluorescence microscopy experiments are consistent with our all-atom MD simulations. In short, membrane domain anti-registration induces local membrane asymmetry and, thus, an intrinsic transmembrane potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call