Abstract
The inactivation of microorganisms by nanoscale zero-valent iron (nZVI) was extensively reported, but what happens inside the cells is rarely explored. Herein, we revealed that nZVI caused the drastic increase of intracellular iron concentrations, which subsequently catalyzed the Haber-Weiss reaction to produce high levels of endogenous reactive oxygen species (ROSs) and inactivated E. coli cells by oxidative damage of DNA, evidenced by the significantly higher inactivation efficiencies of E. coli mutant strains deficient in iron uptake regulation and DNA repair than the parental strain. The intracellular iron levels, endogenous ROSs levels and the inactivation efficiencies of E. coli were positively correlated. The permeabilized cytomembrane due to the close contact between nZVI and E. coli was responsible for the iron overload. This work demonstrates experimentally for the first time that nZVI causes iron overload and endogenous oxidative stress to inactivate E. coli, thus deepening our knowledge of the nZVI antimicrobial mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.