Abstract

Membrane proteins of highly purified porcine zymogen granules were separated by two-dimensional gel electrophoresis in order to isolate proteins which are involved in intracellular trafficking of digestive enzymes in the exocrine pancreas. A 48-kDa glycoprotein was a major component in membrane preparations washed with 0.1 M Na2CO3and 0.5 M NaCl. By N-terminal amino acid sequencing this protein was identified as membrane dipeptidase (MDP; EC 3.4.13.19). MDP mRNA levels in rat pancreas were increased threefold by feeding rats with FOY-305, which is a known stimulus of endogenous cholecystokinin release from the gut. Cholecystokinin then stimulates secretion in pancreatic acinar cells. In another set of experiments treatment of the rat pancreatic acinar tumor cell line AR42J with dexamethasone led to an eightfold increase in the expression of MDP. Thus, the expression pattern of the MDP gene in response to hormonal stimulationin vivoandin vitroresembles those found for most of the enzymes and proteins which are involved in secretion. Since MDP has been thought to have a role in glutathione (GSH) metabolism, we also measured GSH concentration in zymogen granules and found high levels of GSH. Based on our data we propose a working model for the function of MDP. According to this model, MDP might play a pivotal role in maintaining the oxidizing conditions in the ER, which are required for the correct folding of secretory proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.