Abstract

Specific membrane differentiation occurs in the cytoplasmic-tubule system of the absorptive cells lining the mucosa of the lamprey anterior intestine. The absorptive cells are characterized by the presence of abundant mitochondria and a system of well-developed cytoplasmic tubules (∼120 nm in diameter). The cytoplasmic tubules open on to the basolateral cell surface and contain numerous lipoprotein particles (50–100 nm diam.) in their lumina. Lipoprotein particles are also observed in the endoplasmic reticulum and the Golgi complex, and they are transfered to the lateral intercellular space and lamina propria by way of the cytoplasmic tubules. Spirally-wound parallel rows of particles are found in the luminal surface of the cytoplasmic tubules. The rows are ∼17 nm apart and are wound spirally at a pitch of ∼210 nm. Freeze-fracture images of the tubule membranes also show spiral arrays of particles (∼9 nm in diameter) on the P-face, and complementary shallow grooves on the E-face. From these observations, it is suggested that the cytoplasmic-tubule system of the intestinal absorptive cells serves as a channel for the transport of synthesized lipoprotein into the interstitium, and is also the site of the ion and water exchange essential for the maintenance of ionic homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call