Abstract
Membrane depolarization causes transmembrane ionic influxes that induce various gene expressions, and is involved in the processes of neuronal differentiation and apoptosis. However, the effect of membrane depolarization on neuronal proliferation has not been established. In this study, we aimed to investigate the effect of membrane depolarization on the proliferation of SH-SY5Y human neuroblastoma cells. Membrane depolarization induced by 50 mM KCl for 5 min significantly increased SH-SY5Y cell numbers and thymidine incorporation at 24 h after depolarization, and increased the phosphorylation and expression of retinoblastoma protein (RB), the activity of Cdk2 (without changing the activities of Cdk4 and Cdk6), and the expressions of cyclin A and cyclin E. Single and repeated depolarization (once a day for 6 days) had similar effects on RB, Cdks, and cyclins levels and activities. In summary, our results suggest that membrane depolarization may stimulate cellular proliferation by augmenting the expression of cyclin E leading to increases in Cdk2 activity and RB phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.