Abstract

Heat shock proteins (HSPs) are a conserved family of cytoprotective polypeptides, synthesized by cells in response to stress. Hsp70 and heme oxygenase 1 (Hmox-1) are induced by a variety of cellular stressors in skeletal muscle, playing a role in long-term adaptations and muscle fibers regeneration. Though HSPs expression after exercise has been intensely investigated, the molecular mechanisms concerning Hsp70 and Hmox-1 induction are poorly understood. The aim of this work was to investigate the involvement of calcium in Hsp70 and Hmox-1 expression upon depolarization of skeletal muscle cells. We observed that depolarization of myotubes increased both mRNA levels and protein expression for Hsp70 and Hmox-1. Stimulation in the presence of intracellular calcium chelator BAPTA-AM resulted in a complete inhibition of Hsp70-induced expression. It is known that inositol-1,4,5-trisphophate (IP(3))-mediated slow Ca(2+) transients, evoked by membrane depolarization, are involved in the regulation of gene expression. Here we demonstrated that inhibition of IP(3)-dependent calcium signals decreased both Hsp70 mRNA induction and Hsp70 and Hmox-1 protein expression. Inhibitors of calcium-dependent protein kinase C also abolished Hsp70 mRNA induction. Our results provide evidence that membrane depolarization increases Hsp70 and Hmox-1 expression in cultured skeletal muscle cells, which the effect is critically dependent on Ca(2+) released from IP(3)-sensitive intracellular stores and that it involves PKC as an upstream effector in Hsp70 mRNA-induced expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.