Abstract
Water vapor removal by the polymeric membrane to reduce the energy cost during the water–gas shift reaction in a catalytic membrane reactor was investigated. In this study, polyamideimide (PAI) defect-free hollow fiber membranes were produced by a dry/wet phase inversion method. The purpose of this study was to investigate the water vapor removal efficiency under high pressure and high temperature. The morphologies of the hollow fiber membranes were characterized by SEM. The water vapor and hydrogen mixed gas separation properties were used to verify the performance of a defect-free membrane. The water vapor removal efficiency increased from 54% to 90% (at 120 °C) as a function of the operating conditions because of the enhanced water vapor flux. However, the H2 retention ratio was negatively related to the water removal efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.