Abstract

Interactions of AMPs with plasma membranes of primary human immune cells are poorly characterized. Analysis of PI exclusion as a measure of membrane integrity indicated that hBD-3 caused membrane perturbations in monocytes but not T or B cells at concentrations typically used to kill bacteria or to induce activation of APCs. Bleb-like structures were observed in monocytes exposed to hBD-3. These cells also increased surface expression of LAMP1, a membrane repair marker after exposure to hBD-3. Furthermore, cell death was enhanced by adding an inhibitor of membrane repair. Removal of cholesterol from membranes resulted in greater susceptibility of cells to hBD-3, but cholesterol content was not different between the cell types, as assessed by filipin staining. Freshly isolated monocytes expressed higher levels of the negatively charged phospholipid, PS, on their outer leaflet compared with B or T cells. Preincubation of monocytes with molecules that bind PS protected these cells from hBD-3-induced membrane damage, suggesting that outer-membrane PS expression can at least partially explain monocyte susceptibility to hBD-3. The potential for membrane disruption caused by AMPs should be evaluated in various cell types when considering these molecules for therapeutic applications in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call