Abstract

1. Membrane current responses to ATP in enzymically-dispersed single smooth muscle cells from the chicken rectum were investigated by the whole-cell voltage clamp technique. 2. In cells dialysed with a KCl-rich solution under voltage clamp at a holding potential of -40 mV, ATP (10 microM) produced an inward current followed by an outward current. When the holding potential was changed to 0 mV and -80 mV, the biphasic current response to ATP was converted to an outward current alone and an inward current alone, respectively. 3. External application of tetraethylammonium (TEA, 5 mM), intracellular dialysis with a CsCl-rich solution, or inclusion of EGTA (10 mM) in the pipette abolished the outward current response to ATP. 4. Neither depletion of Ca2+ store with caffeine (10 mM) nor block of voltage-gated Ca2+ channels with nifedipine (10 microM) affected the biphasic current response to ATP. After removal of the extracellular Ca2+ the outward current response to ATP was abolished. 5. alpha,beta-methylene ATP (100 microM) elicited a current similar to the ATP-induced current. In the presence of alpha,beta-methylene ATP (100 microM), application of ATP (100 microM) was without effect. 6. In CsCl-filled cells, ATP analogues elicited an inward current and the order of potency was ATP not equal to alpha, beta-methylene ATP > ADP >> AMP. 7. Inclusion of GTP gamma S (0.2 mM) or GDP beta S (2 mM) in the pipette did not affect the ATP-induced inward current in CsCl-filled cells. The reversal potential of the ATP-induced inward current was about 0 mV and was completely inhibited after replacement of the cations in the bath solution by Tris. The reversal potential remained almost unchanged after replacement of Na+ in the bath solution with 1 10 mM Ca2+, but shifted in the negative direction after replacement of Na+ or both Na+ and Ca2+ with glucosamine.8. The results suggest that ATP acts on P2 purinoceptors to cause activation of cation channels with selectivity for Ca2+ over Na+. Moreover, it appears that no G-protein-mediated mechanism is involved and increased Ca2+ entry through the cation channels causes activation of Ca2+-activated K+ channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.