Abstract
Net sugar import by human erythrocytes consists of ATP-modulated rapid and slow phases while sugar export consists of a single slow phase. We have proposed that this behaviour results from obligate substrate tunnelling from transporter to bulk cytosol through a complex containing high-affinity, low-capacity sugar binding sites (Cloherty, Sultzman, Zottola & Carruthers, 1995). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to compartmentalize ATP delivery to erythrocyte membrane ATPases and interact directly with the erythrocyte glucose transporter in vitro. The present study examines the possibility that GAPDH is an obligate component of the hypothesized sugar-binding complex. GAPDH remains associated with the erythrocyte membrane following cell lysis and remains associated with the cytoskeleton under conditions where more than 99% of the membrane glucose transport protein (GLUT1) is released by detergent (Triton X-100). GAPDH is released from erythrocyte membranes upon exposure to Mg.ATP or to NADH. ATP displacement of membrane-bound GAPDH is half-maximal at 200 microM ATP and appears to involve ATP interaction with multiple, co-operative sites. GAPDH interaction with purified tetrameric GLUT1 is saturable, co-operative and also inhibited by ATP. ATP inhibition of GAPDH binding to purified tetrameric GLUT1 is less effective than ATP inhibition of GAPDH binding to intact erythrocyte membranes. Removal of cellular GAPDH by exposing erythrocyte membranes to NADH prior to membrane resealing neither affects ATP modulation of sugar transport nor reduces biphasic net sugar uptake to a single phase. We conclude that ATP-sensitive GAPDH interaction with the cytoplasmic surface of erythrocyte membranes and GLUT1 is responsible neither for ATP modulation of sugar transport nor for multiphasic net sugar import by human red cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.