Abstract
Four proteins have been identified recently as diiron carboxylate proteins on the basis of conservation of six amino acids (four carboxylate residues and two histidines) constituting an iron-binding motif. Unlike previously identified proteins with this motif, biochemical studies indicate that each of these proteins is membrane bound, although homology modeling rules out a transmembrane mode of binding. Therefore, the predicted structure of each protein [the alternative oxidase (AOX), the plastid terminal oxidase (PTOX), the diiron 5-demethoxyquinone hydroxylase (DMQ hydroxylase), and the aerobic Mg-protoporphyrin IX monomethylester hydroxylase (MME hydroxylase)] is that of a protein bound monotopically to one leaflet of the membrane bilayer. Three of these enzymes utilize a quinol substrate, with two oxidizing the quinol (AOX and PTOX) and one hydroxylating it (DMQ hydroxylase). MME hydroxylase is involved in synthesis of the isocyclic ring of chlorophyll. Two enzymes are involved in respiration (AOX and, indirectly, the diiron DMQ hydroxylase through ubiquinone biosynthesis) and two in photosynthesis, through their roles in carotenoid and chlorophyll biosynthesis (PTOX and MME hydroxylase, respectively). We discuss what is known about each enzyme as well as our expectations based on their identification as interfacially bound proteins with a diiron carboxylate active site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.