Abstract

Prothrombin denaturation was examined in the presence of Na2EDTA, 5mM CaCl2, and CaCl2 plus membranes containing 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC) in combination with either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-phosphatidylglycerol (DOPG). Heating denaturation of prothrombin produced thermograms showing two peaks, a minor one at approximately 59 degrees C previously reported to correspond to denaturation of the fragment 1 region (Ploplis, V. A., D. K. Strickland, and F. J. Castellino 1981. Biochemistry. 20:15-21), and a main one at approximately 57-58 degrees C, reportedly due to denaturation of the rest of the molecule (prethrombin 1). The main peak was insensitive to the presence of 5mM Ca2+ whereas the minor peak was shifted to higher temperature (Tm approximately 65 degrees C) by Ca2+. Sufficient concentrations of POPC/bovPS (75/25) large unilamellar vesicles to guarantee binding of 95% of prothrombin resulted in an enthalpy loss in the main endotherm and a comparable enthalpy gain in the minor endotherm accompanying an upward shift in peak temperature (Tm approximately 73 degrees C). Peak deconvolution analysis on the prothrombin denaturation profile and comparison with isolated prothrombin fragment 1 denaturation endotherms suggested that the change caused by POPC/PS vesicles reflected a shift of a portion of the enthalpy of the prethrombin 1 domain to higher temperature (Tm approximately 77 degrees C). The enthalpy associated with this high-temperature endotherm increased in proportion to the surface concentration of PS. By contrast, POPC/DOPG (50/50) membranes shifted the prethrombin 1 peak by 4 degrees C to a lower temperature and the fragment 1 peak by 5 degrees C to a higher temperature. The data lead to a hypothesis that the fragment 1 and prethrombin 1 domains of prothrombin do not denature quite independently and that binding of prothrombin to acidic-lipid membranes disrupts the interaction between these domains. It is further hypothesized that PS containing membranes exert the additional specific effect of decoupling the denaturation of two subdomains of the prethrombin 1 domain of prothrombin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call