Abstract

AbstractThe palm oil industry is one of the most important agro-industries for tropical countries because of the unique properties and wide range of uses of palm oil for various end products. In a palm oil extraction process, a large quantity of water is required, of which half the quantity will end up as effluent. This palm oil mill effluent (POME) has an extremely high content of organic matter, which can cause severe pollution of waterways and other environmental problems. Disposal of this highly polluting effluent has become a major problem for the palm oil mills. Therefore, several methods have been proposed either to treat the POME so it could comply with environmental regulation while discharged or to recover water and other valuable components from the effluent. Membrane technology has emerged as a feasible alternative to conventional treatment in vegetable oil processing because of its attractive features such as low energy consumption, reduction in the number of processing steps, high separation efficiency, and improvement of the final product quality. In the case of POME treatment, an integrated membrane-based process promises efficient water recycling and total solid recovery from the effluent, thus eliminating the environmental problem. Recently, a novel concept combining oil–oil extraction and continuous filtration using a superhydrophobic membrane has been proposed to achieve a zero-sludge palm oil mill. In this concept, the huge wastewater effluent generated from the conventional process can be eliminated and the palm oil milling process simplified. Furthermore, the superhydrophobic membrane enables the production of high-purity palm oil. In this paper, we review the prospect of a zero-sludge palm oil mill concept and strategies to achieve the proposed concept. In addition, we also highlight the development of the superhydrophobic membrane and phytonutrient recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.