Abstract

Highly toxic chlorine gas imposes serious health risks in the workplace. The ability to on-site, real-time monitoring of instantaneous and time-weighted average (TWA) chlorine gas concentrations in a simple, sensitive, accurate, and reliable manner would be highly beneficial to improve workplace health and safety. Here, we propose and experimentally validate a gaseous chlorine detection principle based on a N,N-diethyl-p-phenylenediamine sulfate salt/Cl2 colorimetric reaction-controlled membrane process to regulate the gaseous chlorine transport across a gas-permeable membrane that enables the establishment of a time-resolved analytical relationship to quantify chlorine concentration by multidata points with dramatically enhanced accuracy and reliability. A gas-permeable membrane-based portable colorimetric gaseous chlorine sensing probe (MCSP) was designed and fabricated. The MCSP embedded the proposed analytical principle that is capable of real-time continuous monitoring of the instantaneous and TWA chlorine gas concentrations within an analytical range of 0.009-2.058 mg L-1 without the need for on-going calibration, which could be a useful analytical tool for managing the toxic chlorine gas-imposed health risks in workplaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call