Abstract

Boron deficiency symptoms point to a role for boron in plant membranes, but the molecular partners interacting with boron have not yet been identified. The objective of the present study was to isolate and identify membrane-associated proteins with an ability to interact with boron. Boron-interacting proteins were isolated from root microsomal preparations of arabidopsis (Arabidopsis thaliana) and maize (Zea mays) using phenylboronate affinity chromatography, subsequently separated by two-dimensional gel electrophoresis and identified using MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) peptide mass fingerprinting. Twenty-six boron-binding membrane-associated proteins were identified in A. thaliana, and nine in Z. mays roots. Additional unidentified proteins were also present. Common to both species were the beta-subunit of mitochondrial ATP synthase, several beta-glucosidases, a luminal-binding protein and fructose bisphosphate aldolase. In A. thaliana, binding of these proteins to boron was significantly reduced after 4 d of boron deprivation. The relatively high number of diverse proteins identified as boron interacting, many of which are usually enriched in membrane microdomains, supports the hypothesis that boron plays a role in plant membranes by cross-linking glycoproteins, and may be involved in their recruitment to membrane microdomains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.