Abstract

The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced, secreted and contribute to the pathogenesis of many species of Gram-positive bacteria. The assembly of the CDC pore-forming complex has been under intense study for the past 20years. These studies have revealed a molecular mechanism of pore formation that exhibits many novel features. The CDCs form large β-barrel pore complexes that are assembled from 35 to 40 soluble CDC monomers. Pore formation is dependent on the presence of membrane cholesterol, which functions as the receptor for most CDCs. Cholesterol binding initiates significant secondary and tertiary structural changes in the monomers, which lead to the assembly of a large membrane embedded β-barrel pore complex. This review will focus on the molecular mechanism of assembly of the CDC membrane pore complex and how these studies have led to insights into the mechanism of pore formation for other pore-forming proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call