Abstract

The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call